• About
  • Advertise
  • Careers
  • Contact
Monday, January 18, 2021
No Result
View All Result
NEWSLETTER
iotlasvegas
  • Home
  • Internet of Things
  • Security
  • Mobile
  • Networking
  • Smart Cities
  • Development
  • Data & Analytics
  • Enterprise
  • Home
  • Internet of Things
  • Security
  • Mobile
  • Networking
  • Smart Cities
  • Development
  • Data & Analytics
  • Enterprise
No Result
View All Result
iotlasvegas
No Result
View All Result
Home Internet of Things

Industrial robots could ‘eat metal’ to power themselves

by iotadmin
October 20, 2020
in Internet of Things
0
0
SHARES
8
VIEWS
Share on FacebookShare on Twitter

A fundamental manufacturing shift is on the horizon, some say. It’s where robots run all elements of our future factories. The machines will operate using brain-copying artificial intelligence and handle not only manufacturing processes, but also supply-chain logistics, planning, and other roles formerly performed by humans.

This vision of the future anticipates an industrial workplace where Internet-connected machines will mimic humans, yet do the jobs more precisely, faster and cheaper than humans.

And the human-copying element may not end there. Researchers at the University of Pennsylvania are suggesting that robots could end up eating like humans, too.

Robots will “eat metal for energy,” according to a news article published in Medium. The researchers’ vision for a “metal-air scavenger” could solve one of the quandaries of future IoT-enabled factories. That quandary is how to power a device that moves without adding mass and weight, as one does by adding bulky batteries.

The answer, according to the University of Pennsylvania researchers, is to try to electromechanically forage for energy from the metal surfaces that a robot or IoT device traverses, thus converting material garnered, using a chemical reaction, into power.

“Robots and electronics [would] extract energy from large volumes of energy dense material without having to carry the material on-board,” the researchers say in a paper they’ve published in ACS Energy Letters.

It would be like “eating metal, breaking down its chemical bonds for energy like humans do with food.” Batteries work by repeatedly breaking and creating chemical bonds.

The research references the dichotomy between computing and power storage. Computing is well suited to miniaturization, and processers have been progressively reduced in size while performance has increased, but battery storage hasn’t. You need a bigger battery for more energy.

Even if swarming, industrial robots became the size of insects (I’ve written about the possibility), there’s an issue powering the nano devices – the required size of the power source would defeat the object of the miniaturization. The battery alone could crush the device, and even if it didn’t, the machine would need excessive amounts of energy to move, because of the battery mass. This conundrum is one of the reasons there’s an emphasis in IoT development to find ways to harvest energy ambiently.

However, with ambient power – such as is found in solar or potentially magnetism, for example – power density comes into play. That’s where the harvesting technology can’t pull enough energy out of the environment, or it does it so slowly that it’s not as power-effective as traditional batteries.

Enter the metal-eating robot. The University of Pennsylvania researchers’ form of harvesting efficiently replicates a power-dense battery. Metal is more dense than the battery chemistry.

The group performs their foraging energy production with a hydrogel electrolyte sponge towed by the robot. It uses a cathode, dragged over the surface, to extract amperages from the metal fuel source, such as steel or aluminum.

“Our [metal-air scavenger] has a power density that’s ten times better than the best harvesters, to the point that we can compete against batteries,” said James Pikul, an assistant professor in the University of Pennsylvania’s Department of Mechanical Engineering and Applied Mechanics and one of the paper authors, in the Medium post. “It’s using battery chemistry, but doesn’t have the associated weight, because it’s taking those chemicals from the environment.”

This method is also potentially better than existing lithium-ion battery chemistry, according to Pikul.

“One day, a robot that needs to recharge its batteries will just need to find some aluminum to ‘eat,'” Pikul said.

The robot, although ultimately likely to be a better worker than the human, is a messy eater. As it oxidizes the metal it passes over, it leaves a “microscopic layer of rust in its wake,” according to the article.

Join the Network World communities on Facebook and LinkedIn to comment on topics that are top of mind.

Copyright © 2020 IDG Communications, Inc.

Download Nulled WordPress Themes
Free Download WordPress Themes
Download Nulled WordPress Themes
Download Nulled WordPress Themes
free online course
download lava firmware
Download WordPress Themes Free
free download udemy course
Tags: Industrial robots could 'eat metal' to power themselves
iotadmin

iotadmin

Next Post

German IoT startup Dryad wants to help prevent forest fires

Recommended

The Pentagon’s groundbreaking IPv6 project hasn’t broken much ground

10 months ago

ICANN chief to leave office early, may miss key transition

11 months ago

Buy CBD Online

  • CBD Oils
  • CBG
  • Sleep spray
  • CBD gummies
  • buy CBD oil
  • Dab pens
  • CBD Patches
  • CBD pills
  • Pet CBD
  • CBD for pain
  • CBD for sleep
  • CBD Flower
Facebook Twitter Youtube RSS

Newsletter

Subscribe our Newsletter for our latest updates.

Loading

Category

  • AI
  • Careers
  • Cloud Computing
  • Connected Cars
  • Connected Vehicles
  • Data & Analytics
  • Data Centers
  • Databases
  • Development
  • Enterprise
  • Hardware
  • Healthcare
  • IIoT
  • Infrastructure
  • Internet of Things
  • IoT
  • IT Leadership
  • Manufacturing
  • Mobile
  • Networking
  • Oil & Gas
  • Open Source
  • Security
  • Smart Cities
  • Smart Homes
  • Software
  • Software Development
  • Standards
  • Technology Industry
  • Uncategorized
  • Unified Communications
  • Virtualization
  • WAN
  • Wearables

About Us

Advance IOT information site of Las Vegas USA

© 2019-20 https://iotlasvegas.com.

No Result
View All Result
  • Home
  • Internet of Things
  • Security
  • IoT
  • Mobile
  • Networking
  • Smart Cities
  • Development
  • Data & Analytics
  • Enterprise

© 2019-20 https://iotlasvegas.com.

Login to your account below

Forgotten Password?

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In